

# 8-CH encoder pulse counter or 16-CH DI high-speed counter (MODBUS RTU module WJ69 Series)

#### Features:

- >> The encoder is decoded and converted into standard MODBUS RTU protocol
- >> Can be used as an encoder counter or speed measurement
- >> Support 8 encoders to count at the same time, can identify forward and reverse
- >> It can also be set as 16 independent DI high-speed counters
- >> Encoder count value supports automatic saving after no power
- >> DI input / power supply isolation: 3000VDC
- >> Through the RS-485/232 interface can clear and set the count value
- >> Wide power supply range: 8 ~ 32VDC
- >> High reliability, convenient programming and easy application
- >> Standard DIN35 rail installation, convenient for centralized wiring
- >> The user can program the module address, baud rate, etc.
- >> Dimensions: 120 mm x 70 mm x 43mm

# **Applications:**

- >> Encoder pulse signal measurement
- >> Flow meter pulse counting or flow measurement
- >> Production line product count
- >> Counting the number of logistics packages
- >> Proximity switch pulse signal measurement
- >> The encoder signal is transmitted remotely to the industrial computer
- >> Smart Factory and Industrial Internet of Things
- >> Instead of PLC, directly transmit data to the control center

#### **Product Overview:**

WAYJUN WJ69 products realize the signal acquisition between the sensor and the host, and is used to decode the encoder signal. WJ69 series products can be used in RS-232/485 bus industrial automation control systems, automated machine tools, industrial robots, three-coordinate positioning systems, displacement measurement, stroke measurement, angle measurement, speed measurement, flow measurement, product counting, etc.

Products include signal isolation, pulse signal capture, signal conversion and RS-485 serial communication. Each serial port can connect up to 255 WJ69 series modules. The communication method adopts ASCII code communication protocol or MODBUS RTU communication protocol. The baud rate can be set by code. It can be hung on the same RS-485 bus with other manufacturers' control modules, which is convenient for computers. Programming.



Figure 1 WJ69

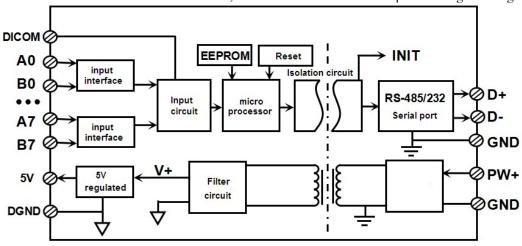



Figure 2: WJ69 Block Diagram



WJ69 series products are intelligent monitoring and control systems based on single-chip microcomputers. All user-set address, baud rate, data format, checksum status and other configuration information are stored in non-volatile memory EEPROM.

WJ69 series products are designed and manufactured in accordance with industrial standards. There is no isolation between signal input and output, with strong anti-interference ability and high reliability. Operating temperature range-45  $\sim$ +85 deg.C.

# **Function Description:**

The WJ69 remote I/O module can be used to measure eight-channel encoder signals, and it can also be set as a 16-channel independent counter or DI state measurement.

# 1. Signal input

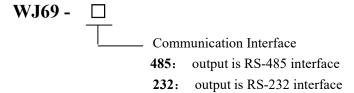
8-channel encoder signal input or 16-channel independent counter can be connected to dry contact and wet contact. Please refer to the wiring diagram section for details.

#### 2. Communication protocol

Communication interface: 1 standard RS-485 communication interface or 1 standard RS-232 communication interface, specify when ordering and selecting.

Communication protocol: supports two protocols, the character protocol defined by the command set and the MODBUS RTU communication protocol. The module automatically recognizes the communication protocol and can realize network communication with various brands of PLC, RTU or computer monitoring systems.

Data format: 10 bits. 1 start bit, 8 data bits, 1 stop bit. No verification.


The communication address ( $0\sim255$ ) and baud rate (2400, 4800, 9600, 19200, 38400, 57600, 115200bps) can be set; the longest distance of the communication network can reach 1200 meters, and it is connected through a twisted pair shielded cable.

The communication interface is designed with high anti-interference,  $\pm 15 \text{KV}$  ESD protection, and the communication response time is less than 100mS.

#### 3. Anti-interference

The checksum can be set as required. There are transient suppression diodes inside the module, which can effectively suppress various surge pulses, protect the module, and the internal digital filter can also suppress the power frequency interference from the power grid.

# **Product Selection:**



Sample 1: part No.:WJ69-232 means output is RS-232 interface Sample 2: part No.: WJ69-485 means output is RS-485 interface

#### WJ69 general parameters:

(typical @  $+25^{\circ}$ C, Vs is 24VDC)

Input type: Encoder AB signal input, 8 channels (A0/B0~A7/B7).

Low level: input < 1VHigh level: input  $3.5 \sim 30V$ 

The frequency range is 0-10KHz (all channels are input at the same time), and a single channel can support 50KHz input.

Encoder counting range-2147483647 ~ +2147483647, automatically saved when power off

DI counter range  $0 \sim 4294967295$ , reset after power off

Input resistance:  $30K\Omega$ 





Communication: Protocol RS-485 or RS-232 standard character protocol and MODBUS RTU communication protocol

Baud rate (2400, 4800, 9600, 19200, 38400, 57600, 115200bps) can be selected by software

Address (0 $\sim$ 255) can be selected by software Communication response time: 100 ms max

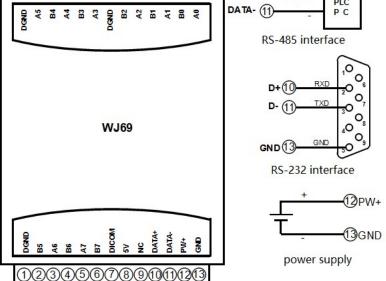
Working power supply: +8 ~ 32VDC wide power supply range, internal anti-reverse connection and overvoltage

protection circuit

Power consumption: less than 1W Working temperature:  $-45 \sim +80$  °C

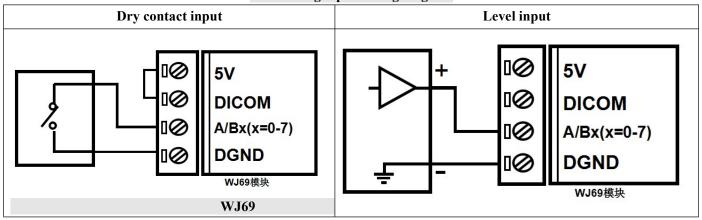
Working humidity:  $10 \sim 90\%$  (non-condensing)

Storage temperature:- $45 \sim +80$ °C

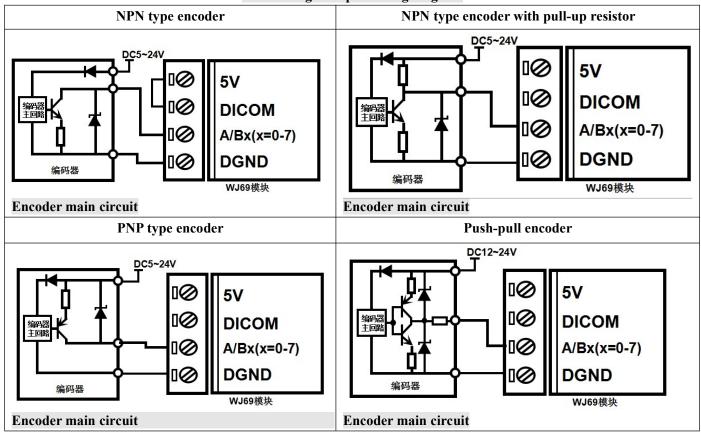

Storage humidity:  $10 \sim 95\%$  (no condensation)

Isolation withstand voltage: 3000V isolation between DI input and power supply, and the communication interface and

power supply share the same ground. Dimensions: 120 mm x 70 mm x 43mm


#### Fo

| l input A l input B l input A l input B l input B |
|---------------------------------------------------|
| l input A<br>l input B<br>l input A               |
| l input B<br>l input A                            |
| l input A                                         |
|                                                   |
| · D                                               |
| l input B                                         |
|                                                   |
| l input A                                         |
| l input B                                         |
| l input A                                         |
| l input B                                         |
| l input A                                         |
|                                                   |
| 1                                                 |






# DI counting input wiring diagram



# Encoder signal input wiring diagram





#### WJ69 character protocol command set:

The factory initial settings of the module are as follows:

Address code: 01 Baud rate: 9600 bps Checksum is disable

If you use the RS-485 network, you must assign a unique address code. The address code is a hexadecimal number between 00 and FF. Since the address codes of the new modules are the same, their addresses will be the same as others. The modules are contradictory, so when you build the system, you must reconfigure each WJ69 module address. After connecting the WJ69 module power cord and RS485 communication line, you can modify the address of the WJ69 module through configuration commands. The baud rate and checksum status also need to be adjusted according to user requirements. Before modifying the baud rate and checksum status, the module must first enter the default state, otherwise it cannot be modified.

#### Let the module into the default state:

WJ69 module has a **INIT** switch, which is on the side of the module. Turn the **INIT** switch to the **INIT** position, and then turn on the power, the module enters the default state at this time. In this state, the module is configured as follows:

Address code 00

Baud rate 9600 bps

Checksum is disable

At this time, you can modify the baud rate, checksum status and other parameters of the WJ69 module through configuration commands. When you are not sure about the specific configuration of a certain module, you can also turn the **INIT** switch to the **INIT** position to make the module enter the default state, and then reconfigure the module.

Note: Normal using, please turn the INIT switch to the NORMAL position.

The character protocol command is composed of a series of characters, such as the first code, address ID, variable, optional checksum byte and an end character (cr) to display the command. In addition to the synchronization command with the wildcard address "\*\*", the host only commands one WJ69 module at a time.

Command format: (Leading Code)(Addr)(Command)[data][checksum](cr)

(Leading code) prefix is the first letter of the command. All commands require a command prefix, such as %,\$,#,@,... etc.

1 - Character

(Addr) module address code, if not specified below, range is from  $00 \sim FF$  (hexadecimal).

2 - Character

(Command) displays the command code or variable value.

Variable length

[data] some data are required by the output command

Variable length

[checksum] Checksum in brackets shows optional parameters. This option is only required when checksum is enabled.

2-character

(cr) A control code character used for identification, (cr) as the carriage return end character, its value is 0x0D.

1-character

When checksum is enabled, [Checksum] is required. It takes up 2 - characters. Both commands and replies must have a checksum feature attached. Checksum is used to check all input commands to help you find host-to-module command errors and module-to-host response errors. The checksum character is placed after the command or response character and before the carriage return character.

Calculation method: two characters, hexadecimal number, is the sum of ASCII code values of all characters sent before, and then the sum of the hexadecimal number 0xFF.



Application example: Disable verification and (checksum)

User command \$002(cr)

Module answer !00020600 (cr)

Enable checksum

User command \$002B6 (cr)

Module answer! !00020600 A9 (cr)

'\$' = 0x24 '0' = 0x30 '2' = 0x32

B6=(0x24+0x30+0x30+0x32) AND 0xFF

'!' = 0x21 '0' = 0x30 '2' = 0x32 '6' = 0x36

A9=(0x21+0x30+0x30+0x30+0x32+0x30+0x36+0x30+0x30) AND 0xFF

# Command response:

The reply information depends on various commands. The response also consists of several characters, including the first code, variable and end identifier. There are two kinds of first codes of response signals, '!' Or '>' indicates a valid command and '?' Is invalid. By checking the response information, you can monitor whether the command is valid

Note: 1. In some cases, many commands use the same command format. Make sure that the address you use is correct in a command. If you use the wrong address and this address represents another module, the command will take effect in the other module, so an error will occur.

- 2. You must enter the command in uppercase letters.
- 3. (cr) represents the carriage return character on the keyboard. Don't write it directly, it should be the Enter key.

#### 1. Setting encoder working mode

Description: Set the encoder working mode, 0 or 1, and the factory default is 0. After the working mode is modified, the module must be restarted to take effect.

Operating mode 0: encoder AB signal input

Working mode 1: two independent counter inputs

Note: The following command remarks (operating mode 0) indicate that the data is valid only when the encoder operating mode is 0. Note (operation mode 1) indicates that the data is valid only when the encoder operation mode is 1.

Command response: \$AA3BBBBBBB(cr) Set the working mode of the encoder. It takes effect after restarting. Parameter description: AA module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AA(cr) indicates successful setting

Parameter description: **BBBBBBBBB** represents the working mode of 8 encoder channels, 8 numbers, and the order is encoder 7~encoder 0,

The value is 0: working mode 0; Value is 1: operating mode 1

Application example: user command (character format) \$01311110000 (cr)

Module response (character format) ! 01(cr)

Description: Set encoder 7~encoder 4 as working mode 1, and encoder 3~encoder 0 as working mode 0.



#### 2. Read the encoder working mode

Description: Read the working mode of the encoder.

Command format: \$AA4(cr) read the operating mode of the encoder.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! BBBBBBB (cr) represents the working mode of 8 encoder channels, the number of which is 8, and the order is encoder 7~encoder 0, the value is 0: working mode 0; Value is 1: operating mode 1

Application example: user command (character format) \$014(cr)

Module response (character format) ! 11110000 (cr)

Description: Encoder 7~Encoder 4 is operating mode 1, Encoder 3~Encoder 0 is operating mode 0

#### 3. Read switch status command

Description: Read back the switch status of all encoder input channels from the module.

Command format: #AA(cr)

Parameter description: # delimiter. The hexadecimal is 23H

**AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: > CCCCCCC, DDDDDDDD (cr) command is valid.

? The 01 (cr) command is invalid or illegal.

Parameter description: > delimiter. Hex is 3EH

**CCCCCCC** represents the read encoder input switch status, 8 numbers, and the order is

B7A7 B6A6 B5A5 B4A4

**DDDDDDD** represents the read encoder input switch status, 8 numbers, and the order is

B3A3 B2A2 B1A1 B0A0,

value is 0: input low level; Value is 1: input high level

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Application example: user command (character format) #01(cr)

Module response (character format) >00001010,00000111(cr)

Description: The module input switch status is 00001010, and the sequence is B7A7 B6A6

B5A5 B4A4

A4: Low B4: High A5: Low B5: High A6: Low B6: Low A7: Low B7: Low

The module input switch status is 00000 111, and the order is B3A3 B2A2 B1A1 B0A0

A0: high level B0: high level A1: high level B1: low level A2: low-level B2: low-level B3: low-level B3: low-level

# 4. Read encoder counter data command (operation mode 0)

Description: Read the data of encoder counter, you can read all encoders or a single encoder. '+' Indicates forward rotation and '-' indicates reverse rotation.

Command format: #AA2(cr)

AA module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted



to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

- 2 indicates the command of reading encoder 0~encoder 7 counter data.
- (cr) End character, upper computer enter key, hexadecimal is 0DH.

Command format: #AA2N (cr) Read channel N count value

**AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

- 2 indicates the command to read counter data.
- N indicates the command to read encoder N counter data.
- (cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: !+AAAAAAAA(cr)

Application example 1: user command (character format) #012(cr)

Module response (character format) !+0012345678, +0012345678, +0012345678,

+0012345678, +0012345678, +0012345678, +0012345678, +0012345678 (cr)

Note: The count value of all encoders is forward +12345678

Application example 2: user command (character format) #0120(cr)

Module response (character format) !-0012345678(cr)

Note: The count value of encoder 0 is reverse -12345678.

#### 5. Read encoder input frequency command (working mode 0)

Description: Read the frequency input by the encoder. You can read all encoders or single encoders. '+' Indicates forward rotation and '-' indicates reverse rotation.

Command format: #AA3

- **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.
  - 3 means reading encoder 0~encoder 7 input frequency command.
- (cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: + AAAAAA.AA,+AAAAAA.AA,+AAAAAAA.AA,

Command format: #AA3N read encoder N input frequency

- AA module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.
- 3 means read input frequency command.
- N means reading encoder N input frequency command.
- (cr) End character, upper computer enter key, hexadecimal is **0DH**.

Answer format: ! +AAAAAA.AA (cr)

Application example 1: user command (character format) #013(cr)

Note: The input frequency value of all encoders is forward rotation+1KHz.

Application example 2: user command (character format) #0130(cr)



Module response (character format) !-001000.00(cr)

Note: The input frequency value of encoder 0 is reverse - 1KHz.

#### 6. Read encoder input speed command (working mode 0)

Description: Read the rotational speed input by the encoder. You can read all encoders or single encoders. '+' Indicates forward rotation and '-' indicates reverse rotation.

Command format: #AA4

- AA module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.
- 4 means reading encoder  $0 \sim 7$  input speed command.
- (cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: !+AAAAA,+AAAAA,+AAAAA,+AAAAA,+AAAAA,+AAAAA,+AAAAA (cr)

Command format: #AA4N read encoder N input speed

- AA module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.
- 4 indicates read input speed command.
- N represents the speed command input by reading encoder N.
- (cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! +AAAAA (cr)

Application example 1: user command (character format) #014(cr)

Module response (character format) !+01000,+01000,+01000,+01000 (cr)

Note: The input speed value of all encoders is positive+1000 rpm.

Application example 2: user command (character format) #0140(cr)

Module response (character format) !-01000(cr)

Note: The input speed value of encoder 0 is reverse - 1000 rpm.

#### 7. Modify the value command of encoder counter (working mode 0)

Description: Modify the value of the encoder counter, or set it to zero to count again.

Command format: **\$AA1N+AAAAAAAA(cr)** Modify the count value of encoder N, where N is the encoder code and the value is  $0\sim7$ . When N is set to 'M', it means that the count value of all encoders is set at the same time.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AA(cr) indicates successful setting

Application example 1: user command (character format) \$0113+000000000(cr)

Module response (character format) ! 01(cr)

Note: Set the count value of encoder 3 to 0.

Application example 2: user command (character format) \$011M+000000000(cr)

Module response (character format) ! 01(cr)

Note: Set the count value of all encoders to 0.

Application example 3: user command (character format) \$011M+0000003000(cr)

Module response (character format) ! 01(cr)



Note: Set the count value of all encoders to +3000.

#### 8. Set the number of pulses per revolution of the encoder (operating mode 0)

Description: Set the number of pulses per revolution of the encoder. Set according to the input encoder parameters. The factory default value is 1000. The encoder speed can be read only after the correct number of pulses is set.

Command format: \$AA5NAAAAA (cr) sets the number of pulses per revolution of the encoder.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

- 5 Set the number of pulses per revolution command of the encoder.
- N Encoder code, value  $0\sim7$ .
- **AAAAA** represents the number of pulses, such as 1000800 or 600.
  - (cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AA(cr) indicates successful setting

Application example: user command (character format) \$015100300(cr)

Module response (character format) ! 01(cr)

Note: Set the number of pulses per revolution of encoder 1 to 300.

# 9. Read the number of pulses per revolution of the encoder (operating mode 0)

Description: Read the number of pulses per revolution of all encoders.

Command format: \$AA6(cr) reads the number of pulses per revolution of all encoders in the order of 0~7.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by **30H** and **31H** in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH

Answer format: ! AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA (cr) represents the number of pulses per revolution from encoder 0 to encoder 7.

Application example: user command (character format) \$016(cr)

Module response (character format) ! 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000 (cr)

Note: The number of pulses per revolution of all encoders is 1000.

#### 10. Set whether the encoder count value is automatically saved after power failure (working mode 0)

Description: Set whether the counting value of the encoder is automatically saved after power failure. The factory default value is 1 (automatic saving).

Command format: \$AASW (cr) sets whether the encoder's power-off is automatically saved.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

- S Sets whether the encoder power off automatically saves the command.
- **W** 0: Do not save automatically; 1: Automatically save the encoder count value when the power is off.
- (cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AA(cr) indicates successful setting

Application example: user command (character format) \$01S0(cr)

Module response (character format) ! 01(cr)

Note: Set the encoder not to save the count value, and automatically reset the count after cutting off the power.



#### 11. Read counter data command (operation mode 1)

Description: Read the data of the counter, you can read all channels or single channel.

Command format: #AA5(cr)

- **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.
  - 5 indicates the command to read channel A0~channel B7 counter data. The order of arrangement is A0, B0,~, A7, B7.
  - (cr) End character, upper computer enter key, hexadecimal is 0DH.

Command format: #AA5N(cr)

- AA module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.
- 5 indicates the command to read counter data.
- N indicates the command to read channel N counter data. N value: 0123456789ABCDEF, corresponding to A0~B7
- (cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: !AAAAAAAA(cr)

Application example 1: user command (character format) #015(cr)

Module response (character format) !0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 001256688, 001256688, 001256688, 001256688, 00125688, 00125688, 00125688, 00125688, 00125688, 00125688

Note: The count value of all channels is 12345678.

Application example 2: user command (character format) #015F(cr)

Module response (character format) !0012345678(cr)

Note: The count value of channel B7 is 12345678.

#### 12. Read input frequency command (operation mode 1)

Description: Read the input frequency. You can read all channels or single channel.

Command format: #AA6

AA module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

6 means to read channel A0~channel B7 input frequency command.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Command format: #AA6N read channel N input frequency

**AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H



and 31H in hexadecimal.

6 means read input frequency command.

N means to read channel N input frequency command. N value: 0123456789ABCDEF, corresponding to A0 $\sim$ B7

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AAAAAA.AA (cr)

Application example 1: user command (character format) #016(cr)

Note: The input frequency value of all channels is 1KHz.

Application example 2: user command (character format) #016E(cr)

Module response (character format) !001000.00(cr)

Note: The input frequency value of channel A7 is 1KHz.

#### 13. Modify the value command of DI counter (operation mode 1)

Description: Modify the value of DI counter, or set it to zero to count again.

Command format: \$AA2N+AAAAAAAA(cr) Modify the count value of counter N, N is the counter code, and the value is 0123456789ABCDEF, corresponding to A0~B7. When N is set to 'M', it means to set the count value of all channels at the same time.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

Application example 1: user command (character format) \$012F+000000000(cr)

Module response (character format) ! 01(cr)

Note: Set the count value of channel B7 to 0.

Application example 2: user command (character format) \$012M+000000000(cr)

Module response (character format) ! 01(cr)

Note: Set the count value of all channels to 0.

Application example 3: user command (character format) \$012M+0000003000(cr)

Module response (character format) ! 01(cr)

Note: Set the count value of all channels to +3000.

#### 14. Set the counting mode of DI counter (operation mode 1)

Description: Set whether the DI counter is counting the rising edge or the falling edge. The factory setting is 00000000, 000000000. Default is rising edge count, the settings take effect after the module is restarted.

Command format: \$AA7AAAAAAAAA,BBBBBBBB(cr) Sets the counting method of DI counters.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AA(cr) indicates setting successfully

Parameter description: **AAAAAAA** represents channel status, 8 numbers, and the order is B7A7 B6A6 B5A5 B4A4, represents channel status, 8 numbers, and the order is B3A3 B2A2 B1A1 B0A0,

value is 0: the rising edge count of the channel, value is 1: the falling edge count of this channel

Application example: user command (character format) \$01711110000,00001111(cr)

Module response (character format) ! 01(cr)



Note: Set the falling edge count of B7~A6 channels and the rising edge count of B5~A2 channels, Set the falling edge count of B1~A0 channels.

# 15. Reading the counting mode of DI counter (operation mode 1)

Description: Read whether the DI counter is a rising edge count or a falling edge count.

Command format: \$AA8(cr) Read the counting method of DI counter.

Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AAAAAAA,BBBBBBBB (cr) indicates the counting method of DI counter.

Parameter description: **AAAAAAA** represents channel status, 8 numbers, and the order is B7A7 B6A6 B5A5 B4A4 **BBBBBBB** represents channel status, 8 numbers, and the order is B3A3 B2A2 B1A1 B0A0

value is 0: the rising edge count of the channel, value is 1: the falling edge count of this channel

Application example: user command (character format) \$018(cr)

Module response (character format) ! 11110000,00001111 (cr)

Note: The falling edge of channels B7~A6 is counted, the rising edge of channels B5~A2 is counted, and the falling edge of channels B1~A0 is counted.

#### 16. Set DI filter time (operation mode 1)

Description: Set the filter time of DI. 1 means 1mS, and the factory default is 0. The photoelectric switch input is set to 0, and the mechanical switch or relay input is recommended to be set to  $20\sim100$ . The settings take effect after restarting.

Command format: **\$01LWNAAAA** sets the filtering time of DI channel N. N is the counter code, the value is 0123456789ABCDEF, corresponding to A0~B7. When N is set to 'M', it means that the filtering time of all channels is set at the same time. AAAAA stands for filtering time, such as 0, 20 or 50.

Answer format: ! 01(cr) indicates setting successfully

Application example: user command (character format) \$01LW100020

Module response (character format) ! 01(cr)

Note: Set the filtering time of B0 to 20, that is, 20 ms.

#### 17. Read DI filter time (operation mode 1)

Description: Read the filtering time of all DI channels

Command format: **\$01LR** reads the filtering time of all DIs in the order of A0, B0,~, A7, B7.

AAAAA, AAAAA, AAAAA, AAAAA, AAAAA represents the filtering time of  $A0,B0, \sim \sim A7,B7$ .

Application example: user command (character format) \$01LR

Module response (character format) ! 00020, 00020, 00020, 00020, 00020, 00020, 00020,

 $00020,\,00020,\,00020,\,00020,\,00020,\,00020,\,00020,\,00020,\,00020,\,00020\,(cr)$ 

Note: The filtering time of all DI channels is 20mS.

#### 18. Set all parameters set by the above character command to restore factory settings.

Description: The parameters set by the setting module with the above character command are restored to the factory settings, and the module will restart automatically after completion.

Command format: \$AA900(cr) Set parameters to restore factory settings.



Parameter description: **AA** module address, value range: 00~FF (hexadecimal). The factory address is 01 and converted to hexadecimal ASCII code for each character. For example, address 01 is replaced by 30H and 31H in hexadecimal.

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: ! AA(cr) indicates that the setting is successful and the module will restart automatically.

Application example: user command (character format) \$01900

Module response (character format) ! 01(cr)

Note: The parameters are restored to factory settings.

#### 19. Configure WJ69 module command

Description: Set the address, baud rate and checksum status for a WJ69 module. The configuration information is stored

in the non-volatile memory EEPROM.

Command format: %AANNTTCCFF(cr)

Parameter description: % delimiter.

**AA** module address, value range: 00~FF (hexadecimal).

NN represents the hexadecimal address of the new module, and the value NN ranges from 00

TT Type code is represented by hexadecimal. The WJ69 product must be set to 00.

**CC** The baud rate is represented by hexadecimal.

| Baud rate code | Baud rate   |
|----------------|-------------|
| 04             | 2400 baud   |
| 05             | 4800 baud   |
| 06             | 9600 baud   |
| 07             | 19200 baud  |
| 08             | 38400 baud  |
| 09             | 57600 baud  |
| 0A             | 115200 baud |

Table 2 Baud rate code

**FF** 8 hexadecimal digits represents the data format and checksum. Note that bits2 to bits5 do not have to be set to zero

| Bit7   Bit 6   Bit 5   Bit 4   Bit 3   Bit2   Bit 1   Bit 0 |
|-------------------------------------------------------------|
|-------------------------------------------------------------|

Table 3 Data format, checksum code

Bit7: reserved bit, must be set to zero

Bit6: checksum status, 0: prohibited; Is 1: allowed

Bit5-bit2: No, it must be set to zero.

Bit1-bit0: data format bit. 00: Engineering Units

10: Two completion in hexadecimal

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: !AA(cr) command is valid.

**?AA(cr)** command is invalid or illegal, or the configuration jumper is not installed before changing the baud rate or checksum.

Parameter description: ! The delimiter indicates that the command is valid.

? The delimiter indicates that the command is invalid.

AA represents the input module address



(cr) End character, upper computer enter key, hexadecimal is 0DH.

Other instructions: If you configure the module for the first time, AA=00, NN equals the new address. If the reconfiguration module changes the address, input range, and data format, AA is equal to the currently configured address, and NN is equal to the current or new address. If you want to reconfigure the module to change the baud rate or checksum state, you must install the configuration jumper to make the module enter the default state. At this time, the module address is 00H, that is, AA=00H, and NN is equal to the current or new address.

If format error or communication error or address does not exist, the module will not respond.

Application example: user command %0011000600(cr)

Module answer !11(cr)

Description: % delimiter.

means the WJ69 module original address is 00H that you want.

11 indicates that the hexadecimal address of the new module is 11H.

**00** type code, WJ69 product must be set to 00.

of indicates the baud rate 9600 baud.

00 indicates that the data format is engineering unit, and checksum is prohibited.

# 20. Read Configuration Status Command

Description: Read the configuration for the specified WJ69 module.

Command format: \$AA2(cr)

Parameter description: \$ delimiter.

AA module address, value range: 00~FF (hexadecimal).

2 indicates read configuration status command

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Answer format: !AATTCCFF(cr) command is valid.

**?AA(cr)** command is invalid or illegal.

Parameter description: ! delimiter.

AA represents the input module address.

TT stands for type code.

CC stands for baud rate coding. See Table 2

FF See Table 3

(cr) End character, upper computer enter key, hexadecimal is 0DH.

Other instructions: If the format error or communication error or address does not exist, the module will not respond.

Application example: user command \$302(cr)

Module answer !300F0600(cr)

Description: ! delimiter.

30 means WJ69 module address is 30H.

00 indicates input type code.

**06** indicates baud rate 9600 baud.

**00** indicates checksum is prohibited.



# **Modbus RTU communication protocol:**

The factory default settings of the module are as follows:

Modbus address is 01

Baud rate 9600 bps

Data format: 10 bits. 1-bit start bit, 8-bit data bit, 1-bit stop bit. No verification.

Method to put the module into the default state:

There is an INIT switch at the side of the WJ69 module. Turn the INIT switch to the INIT position, and then turn on the power. At this time, the module enters the default state. In this state, the module reverts to the default state temporarily: the address is 01, and the baud rate is 9600. When unsure of the specific configuration of a module, the user can query the address and baud rate register 40201-4022 to get the actual address and baud rate of the module, or modify the address and baud rate as needed.

Note: Please turn the INIT switch to the NORMAL position during normal use.

Modbus RTU communication protocol is supported, and the command format is in accordance with the standard Modbus RTU communication protocol.

Function codes supported by WJ69, see the following for details:

|    | Function code            | Name                     | Description       |
|----|--------------------------|--------------------------|-------------------|
| 01 | Read Coil Status         | Read coil status         | address 0x starts |
| 03 | Read Holding Register    | Read Holding Register    | address 4x starts |
| 05 | Write Single Coil        | Write Single Coil        | address 0x starts |
| 06 | Write Single Register    | Write Single Register    | address 4x starts |
| 15 | Write Multiple Coils     | Write Multiple Coils     | address 0x starts |
| 16 | Write Multiple Registers | Write Multiple Registers | address 4x starts |



# Register address description

Registers supporting function codes 01, 05 and 15

| Address 0X (PLC) | Address<br>(PC, DCS) | Data content             | Properties | Data description                      |
|------------------|----------------------|--------------------------|------------|---------------------------------------|
| 00001            | 0                    | A0 counting method       | Read/write | Counting mode of channels A0~B7       |
| 00002            | 1                    | B0 counting method       | Read/write | (The default value is 0)              |
| 00003            | 2                    | A1 counting method       | Read/write | 0 is the rising edge count,           |
| 00004            | 3                    | B1 counting method       | Read/write | 1 is the falling edge count           |
| 00005            | 4                    | A2 counting method       | Read/write | The settings take effect after the    |
| 00006            | 5                    | B2 counting method       | Read/write | module is restarted.                  |
| 00007            | 6                    | A3 counting method       | Read/write | It is normal to use the default value |
| 80000            | 7                    | B3 counting method       | Read/write | without modification.                 |
| 00009            | 8                    | A4 counting method       | Read/write |                                       |
| 00010            | 9                    | B4 counting method       | Read/write | -                                     |
| 00011            | 10                   | A5 counting method       | Read/write | -                                     |
| 00012            | 11                   | B5 counting method       | Read/write | -                                     |
| 00013            | 12                   | A6 counting method       | Read/write | -                                     |
| 00014            | 13                   | B6 counting method       | Read/write | -                                     |
| 00015            | 14                   | A7 counting method       | Read/write |                                       |
| 00016            | 15                   | B7 counting method       | Read/write |                                       |
|                  |                      |                          |            |                                       |
| 00033            | 32                   | A0 Input switching value | Read only  | Level status of encoder input point   |
| 00034            | 33                   | B0 Input switching value | Read only  | 0 indicates low level input,          |
| 00035            | 34                   | A1 Input switching value | Read only  | 1 indicates high level input          |
| 00036            | 35                   | B1 Input switching value | Read only  |                                       |
| 00037            | 36                   | A2 Input switching value | Read only  |                                       |
| 00038            | 37                   | B2 Input switching value | Read only  |                                       |
| 00039            | 38                   | A3 Input switching value | Read only  |                                       |
| 00040            | 39                   | B3 Input switching value | Read only  |                                       |
| 00041            | 40                   | A4 Input switching value | Read only  |                                       |
| 00042            | 41                   | B4 Input switching value | Read only  |                                       |
| 00043            | 42                   | A5 Input switching value | Read only  |                                       |
| 00044            | 43                   | B5 Input switching value | Read only  |                                       |
| 00045            | 44                   | A6 Input switching value | Read only  |                                       |
| 00046            | 45                   | B6 Input switching value | Read only  |                                       |
| 00047            | 46                   | A7 Input switching value | Read only  |                                       |
| 00048            | 47                   | B7 Input switching value | Read only  |                                       |
|                  |                      |                          |            |                                       |



Registers supporting function codes 03, 06 and 16

| Address 4X                | Address   | codes 03, 06 and 16    |            |                                                                        |
|---------------------------|-----------|------------------------|------------|------------------------------------------------------------------------|
| (PLC)                     | (PC, DCS) | Data content           | Properties | Data description                                                       |
| 40001                     | 0         | Encoder 0 working mode | Read/write | Encoder operating mode, integer, 0 or 1,                               |
| 40002                     | 1         | Encoder 1 working mode | Read/write | The factory default is 0 (it takes effect                              |
| 40003                     | 2         | Encoder 2 working mode | Read/write | only after modification after restart)                                 |
| 40004                     | 3         | Encoder 3 working mode | Read/write | working mode 0: Encoder AB signal                                      |
| 40005                     | 4         | Encoder 4 working mode | Read/write | input                                                                  |
| 40006                     | 5         | Encoder 5 working mode | Read/write | working mode 1: two independent                                        |
| 40007                     | 6         | Encoder 6 working mode | Read/write | counter inputs                                                         |
| 40008                     | 7         | Encoder 7 working mode | Read/write | The following register remarks (working mode 0) indicate that the data |
|                           |           |                        |            | is valid only when the encoder operation                               |
|                           |           |                        |            | mode is 0. Note (working mode 1)                                       |
|                           |           |                        |            | indicates that the data is valid only when                             |
|                           |           |                        |            | the encoder operation mode is 1.                                       |
|                           |           |                        |            | the encoder operation mode is 1.                                       |
| 40017~40018               | 16~17     | Encoder 0 count        | Read/write | Encoder 0~7 counter (working mode 0)                                   |
| 40019~40020               | 18~19     | Encoder 1 count        | Read/write | The data is a signed long integer,                                     |
| 40021~40022               | 20~21     | Encoder 2 count        | Read/write | The storage order is CDAB.                                             |
| 40023~40024               | 22~23     | Encoder 3 count        | Read/write | hexadecimal format, negative numbers                                   |
| 40025~40026               | 24~25     | Encoder 4 count        | Read/write | use complement                                                         |
| 40027~40028               | 26~27     | Encoder 5 count        | Read/write | (two's complement)                                                     |
| 40029~40030               | 28~29     | Encoder 6 count        | Read/write | Positive                                                               |
| 40031~40032               | 30~31     | Encoder 7 count        | Read/write | number (0x00000000~0x7FFFFFF),                                         |
|                           |           |                        |            | Negative                                                               |
|                           |           |                        |            | number (0xFFFFFFFF-0x80000001),                                        |
|                           |           |                        |            | Clear the counter and write 0 directly to                              |
|                           |           |                        |            | the corresponding register,                                            |
|                           |           |                        |            | You can also write other values as                                     |
|                           |           |                        |            | needed.                                                                |
| 40033~40034               | 32~33     | Channel A0 count       | Read/write | Channel A0~B7 counter (working                                         |
| 40035~40036               | 34~35     | Channel B0 count       | Read/write | mode 1)                                                                |
| 40037~40038               | 36~37     | Channel A1 count       | Read/write | The data is an unsigned long integer,                                  |
| 40037~40038               | 38~39     | Channel B1 count       | Read/write | Storage order is CDAB. Hexadecimal                                     |
| 40041~40042               | 40~41     | Channel A2 count       | Read/write | format,                                                                |
| 40043~40044               | 42~43     | Channel B2 count       | Read/write | (0x00000000~0xFFFFFF), the counter                                     |
| 40045~40046               | 44~45     | Channel A3 count       | Read/write | is cleared and 0 is written directly to the                            |
| 40047~40048               | 46~47     | Channel B3 count       | Read/write | corresponding register, or other values                                |
| 40049~40050               | 48~49     | Channel A4 count       | Read/write | can be written as required.                                            |
| 40051~40052               | 50~51     | Channel B4 count       | Read/write |                                                                        |
| 40053~40054               | 52~53     | Channel A5 count       | Read/write |                                                                        |
| 40055~40056               | 54~55     | Channel B5 count       | Read/write |                                                                        |
| 10022 ~ <del>1</del> 0020 | J T - 33  | Chamici DJ Count       | TCau/ WITE |                                                                        |





|   | 40057~40058 | 56~57 | Channel A6 count | Read/write |
|---|-------------|-------|------------------|------------|
|   | 40059~40060 | 58~59 | Channel B6 count | Read/write |
| - | 40061~40062 | 60~61 | Channel A7 count | Read/write |
|   | 40063~40064 | 62~63 | Channel B7 count | Read/write |
|   |             |       |                  |            |

| Address (PLC) | 4X | Address<br>(PC, DCS) | Data content | Properties                             | Data description                         |
|---------------|----|----------------------|--------------|----------------------------------------|------------------------------------------|
| 40068         | 67 | Count clear registe  | write        | Unsigned integer, default is 0, modify |                                          |
|               |    |                      |              |                                        | this register to clear encoder counter o |
|               |    |                      |              |                                        | channel counter. After modification, the |
|               |    |                      |              |                                        | register will automatically return to 0. |
|               |    |                      |              |                                        | Write 10: set the count value of encode  |
|               |    |                      |              |                                        | 0 to 0,                                  |
|               |    |                      |              |                                        | Write 11: set the count value of encode  |
|               |    |                      |              |                                        | 1 to 0,                                  |
|               |    |                      |              |                                        | Write 12: set the count value of encode  |
|               |    |                      |              |                                        | 2 to 0,                                  |
|               |    |                      |              |                                        | Write 13: set the count value of encode  |
|               |    |                      |              |                                        | 3 to 0,                                  |
|               |    |                      |              |                                        | Write 14: set the count value of encode  |
|               |    |                      |              |                                        | 4 to 0,                                  |
|               |    |                      |              |                                        | Write 15: set the count value of encode  |
|               |    |                      |              |                                        | 5 to 0,                                  |
|               |    |                      |              |                                        | Write 16: set the count value of encode  |
|               |    |                      |              |                                        | 6 to 0,                                  |
|               |    |                      |              |                                        | Write 17: set the count value of encode  |
|               |    |                      |              |                                        | 7 to 0,                                  |
|               |    |                      |              |                                        | Write 18: set all encoder count values t |
|               |    |                      |              |                                        | 0,                                       |
|               |    |                      |              |                                        | Write 20: set the count value of channel |
|               |    |                      |              |                                        | A0 to 0,                                 |
|               |    |                      |              |                                        | Write 21: Set the count value of channel |
|               |    |                      |              |                                        | B0 to 0,                                 |
|               |    |                      |              |                                        | Write 22: Set the count value of channel |
|               |    |                      |              |                                        | A1 to 0,                                 |
|               |    |                      |              |                                        | Write 23: Set the count value of channel |
|               |    |                      |              |                                        | B1 to 0,                                 |
|               |    |                      |              |                                        | Write 24: Set the channel A2 count value |
|               |    |                      |              |                                        | to 0,                                    |
|               |    |                      |              |                                        | Write 25: Set the count value of channel |
|               |    |                      |              |                                        | B2 to 0,                                 |
|               |    |                      |              |                                        | Write 26: Set the count value of channel |
|               |    |                      |              |                                        | A3 to 0,                                 |
|               |    |                      |              |                                        | Write 27: Set the count value of channel |



| 120   | MOLOGI |                        |            | 1/102228 111 6 1/100000 // 0 (           |
|-------|--------|------------------------|------------|------------------------------------------|
|       |        |                        |            | B3 to 0,                                 |
|       |        |                        |            | Write 28: Set the count value of channel |
|       |        |                        |            | A4 to 0,                                 |
|       |        |                        |            | Write 29: Set the count value of channel |
|       |        |                        |            | B4 to 0,                                 |
|       |        |                        |            | Write 30: set the count value of channel |
|       |        |                        |            | A5 to 0,                                 |
|       |        |                        |            | Write 31: Set the count value of channel |
|       |        |                        |            | B5 to 0,                                 |
|       |        |                        |            | Write 32: set the count value of channel |
|       |        |                        |            | A6 to 0,                                 |
|       |        |                        |            | Write 33: Set the count value of channel |
|       |        |                        |            | B6 to 0,                                 |
|       |        |                        |            | Write 34: Set the count value of channel |
|       |        |                        |            | A7 to 0,                                 |
|       |        |                        |            | Write 35: Set the count value of channel |
|       |        |                        |            | B7 to 0,                                 |
|       |        |                        |            | Write 36: Set the count value of all     |
|       |        |                        |            | channels to 0                            |
|       |        |                        |            | Writing other values is invalid.         |
| 40073 | 72     | Encoder 0 pulse number | Read/write | encoder pulse number (working mode       |
| 40074 | 73     | Encoder 1 pulse number | Read/write | 0)                                       |
| 40075 | 74     | Encoder 2 pulse number | Read/write | Unsigned integer (factory default value  |
| 40076 | 75     | Encoder 3 pulse number | Read/write | is 1000), which is set according to the  |
| 40077 | 76     | Encoder 4 pulse number | Read/write | number of pulses per revolution of the   |
| 40078 | 77     | Encoder 5 pulse number | Read/write | encoder. After setting, registers        |
| 40079 | 78     | Encoder 6 pulse number | Read/write | $40101\sim40108$ are the speed of the    |
| 40079 | 79     | Encoder 7 pulse number | Read/write | corresponding channel.                   |
| 40000 | 19     | Encoder / pulse number | Read/wille |                                          |
| 40089 | 88     | Restore parameters to  | Read/write | Set to FF00, the parameters of all       |
|       |        | factory settings       |            | registers of the module will be restored |
|       |        |                        |            | to the factory settings, and the module  |
|       |        |                        |            | will restart automatically after         |
|       |        |                        |            | completion                               |
|       |        |                        |            |                                          |
|       |        |                        |            |                                          |
|       |        |                        |            | •                                        |

| Address 4X (PLC) | Address<br>(PC, DCS) | Data content    | Properties | Data description                        |
|------------------|----------------------|-----------------|------------|-----------------------------------------|
| 40101            | 100                  | Encoder 0 speed | Read only  | Encoder speed (working mode 0)          |
| 40102            | 101                  | Encoder 1 speed | Read only  | Signed integer, positive and negative   |
| 40103            | 102                  | Encoder 2 speed | Read only  | means positive and negative.            |
| 40104            | 103                  | Encoder 3 speed | Read only  | The speed is converted according to the |
| 40105            | 104                  | Encoder 4 speed | Read only  | number of pulses set in registers       |



# MODBUS RTU Module WJ69

| TECHNOLOGY MODDOS KTO Motute W 307 |                      |                      |            |                                              |  |  |
|------------------------------------|----------------------|----------------------|------------|----------------------------------------------|--|--|
| 40106                              | 105                  | Encoder 5 speed      | Read only  | 40073~40080                                  |  |  |
| 40107                              | 106                  | Encoder 6 speed      | Read only  |                                              |  |  |
| 40108                              | 107                  | Encoder 7 speed      | Read only  |                                              |  |  |
|                                    |                      |                      |            |                                              |  |  |
| 40129~40130                        | 128~129              | Encoder 0 frequency  | Read only  | Encoder pulse frequency (working mode        |  |  |
| 40131~40132                        | 130~131              | Encoder 1 frequency  | Read only  | 0)                                           |  |  |
| 40133~40134                        | 132~133              | Encoder 2 frequency  | Read only  | The data is a 32-bit floating point number,  |  |  |
| 40135~40136                        | 134~135              | Encoder 3 frequency  | Read only  | the storage order is CDAB.                   |  |  |
| 40137~40138                        | 136~137              | Encoder 4 frequency  | Read only  |                                              |  |  |
| 40139~40140                        | 138~139              | Encoder 5 frequency  | Read only  |                                              |  |  |
| 40141~40142                        | 140~141              | Encoder 6 frequency  | Read only  |                                              |  |  |
| 40143~40144                        | 142~143              | Encoder 7 frequency  | Read only  |                                              |  |  |
|                                    |                      |                      |            |                                              |  |  |
| 40145~40146                        | 144~145              | Channel A0 frequency | Read only  | Pulse frequency of encoder (working          |  |  |
| 40147~40148                        | 146~147              | Channel B0 frequency | Read only  | mode 1)                                      |  |  |
| 40149~40150                        | 148~149              | Channel A1 frequency | Read only  | The data is a 32-bit floating point number,  |  |  |
| 40151~40152                        | 150~151              | Channel B1 frequency | Read only  | The storage order is CDAB.                   |  |  |
| 40153~40154                        | 152~153              | Channel A2 frequency | Read only  | If the device cannot read the floating point |  |  |
| 40155~40156                        | 154~155              | Channel B2 frequency | Read only  | number, it can read the register             |  |  |
| 40157~40158                        | 156~157              | Channel A3 frequency | Read only  | 40217~40232                                  |  |  |
| 40159~40160                        | 158~159              | Channel B3 frequency | Read only  |                                              |  |  |
| 40161~40162                        | 160~161              | Channel A4 frequency | Read only  |                                              |  |  |
| 40163~40164                        | 162~163              | Channel B4 frequency | Read only  |                                              |  |  |
| 40165~40166                        | 164~165              | Channel A5 frequency | Read only  |                                              |  |  |
| 40167~40168                        | 166~167              | Channel B5 frequency | Read only  |                                              |  |  |
| 40169~40170                        | 168~169              | Channel A6 frequency | Read only  |                                              |  |  |
| 40171~40172                        | 170~171              | Channel B6 frequency | Read only  |                                              |  |  |
| 40173~40174                        | 172~173              | Channel A7 frequency | Read only  |                                              |  |  |
| 40175~40176                        | 174~175              | Channel B7 frequency | Read only  |                                              |  |  |
|                                    |                      |                      |            |                                              |  |  |
| 40181~40196                        | 180~195              | Channel A0~B7        | Read/write | Filtering time of channels A0~B7             |  |  |
|                                    |                      | Filtering time       |            | (working mode 1)                             |  |  |
|                                    |                      |                      |            | Unsigned integer. Each register              |  |  |
|                                    |                      |                      |            | corresponds to the filtering time of one     |  |  |
|                                    |                      |                      |            | channel. 1 means the filtering time is       |  |  |
|                                    |                      |                      |            | 1mS, the photoelectric switch input is set   |  |  |
|                                    |                      |                      |            | to 0, and the mechanical switch or relay     |  |  |
|                                    |                      |                      |            | input is recommended to be set to 20~100.    |  |  |
|                                    |                      |                      |            | The settings take effect after restarting.   |  |  |
|                                    |                      |                      |            |                                              |  |  |
|                                    |                      |                      |            |                                              |  |  |
| Address 4X (PLC)                   | Address<br>(PC, DCS) | Data content         | Properties | Data description                             |  |  |
| 40201                              | 200                  | Module address       | Read/write | Integer, effective after restart, range      |  |  |
|                                    |                      |                      |            |                                              |  |  |



|             |         |                                |            | 0x0000-0x00FF                                                                                                                                      |
|-------------|---------|--------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 40202       | 201     | Baud rate                      | Read/write | Integer, effective after restart, range 0x0004-0x000A 0x0004 = 2400 bps, 0x0005 = 4800 bps                                                         |
|             |         |                                |            | 0x0006 = 9600 bps,<br>0x0007 = 19200 bps<br>0x0008 = 38400 bps,<br>0x0009 = 57600 bps<br>0x000A = 115200bps                                        |
| 40211       | 210     | Module name                    | Read only  | High: 0x00 low: 0x69                                                                                                                               |
| 40217~40232 | 216~231 | Frequency of channels A0 to B7 | Read only  | Pulse frequency of channels A0~B7 (working mode 1)  The data is a 16-bit unsigned integer, and each register corresponds to one channel frequency. |

Table 5 Modbus Rtu Register Description

Communication example 1: If the module address is 01, send it in hexadecimal: 010300100002C5CE to obtain the register data.

| 01      | 03 00                         |  | 10 00            |               | 02           | C5            | CE             |
|---------|-------------------------------|--|------------------|---------------|--------------|---------------|----------------|
| Module  | Read Holding Register address |  | Register address | Register      | Register     | CRC check low | CRC check high |
| address | Register high                 |  | low              | quantity high | quantity low |               |                |

If the module replies: **010304CA90FFFFC476**, the data read is 0xFFFFCA90, and the decimal number is - 13680, which means that the current count value of encoder 0 is - 13680.

| 01      | 03           | 04              | CA          | 90         | FF          | FF         | C4            | 76             |
|---------|--------------|-----------------|-------------|------------|-------------|------------|---------------|----------------|
| Module  | Read Holding | Number of bytes | Data 1 high | Data 1 low | Data 2 high | Data 2 low | CRC check low | CRC check high |
| address | Register     | of data         | bit         | bit        | bit         | bit        |               |                |

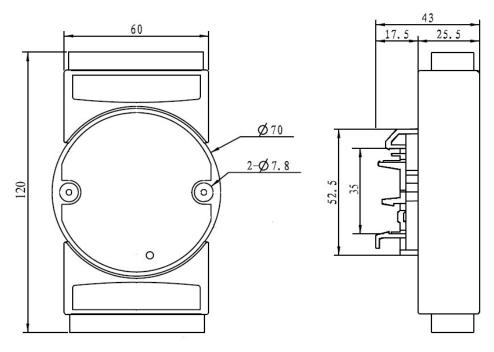
Communication example 2: If the module address is 01, send 010300200002C5C1 in hexadecimal to obtain the data of the register.

| 01      | 03 00         |                  | 20 00            |               | 02           | C5            | C1             |
|---------|---------------|------------------|------------------|---------------|--------------|---------------|----------------|
| Module  | Read Holding  | Register address | Register address | Register      | Register     | CRC check low | CRC check high |
| address | Register high |                  | low              | quantity high | quantity low |               |                |

If the module replies: **010304CA90FFFFC476**, the data read is 0xFFFFCA90, and the decimal number is 4294953616, which means that the current count value of channel A0 is 4294953616.

| 01      | 03           | 04         | CA          | 90         | FF          | FF         | C4            | 76             |
|---------|--------------|------------|-------------|------------|-------------|------------|---------------|----------------|
| Module  | Read Holding | Data bytes | Data 1 high | Data 1 low | Data 2 high | Data 2 low | CRC check low | CRC check high |
| address | Register     | number     | bit         | bit        | bit         | bit        |               |                |




**Communication example 3:** If the module address is 01, send it in hexadecimal: **01060043000AF819**, that is, reset the count value of encoder 0

| 01      | 06               |        | 00       |         | 43       |         | 00        | 0A       | F8            | 19             |
|---------|------------------|--------|----------|---------|----------|---------|-----------|----------|---------------|----------------|
| Module  | Write a          | single | Register | address | Register | address | Data high | Data low | CRC check low | CRC check high |
| address | holding register |        | high     |         | low      |         |           |          |               |                |

If the module replies: 01060043000AF819, the setting is successful, and the count value of encoder 0 is changed to 0

| 01      | 06               |        | 00       |         | 43       |         | 00        | 0A       | F8            | 19             |
|---------|------------------|--------|----------|---------|----------|---------|-----------|----------|---------------|----------------|
| Module  | Write a          | single | Register | address | Register | address | Data high | Data low | CRC check low | CRC check high |
| address | holding register |        | high     |         | low      |         |           |          |               |                |

Dimension: (unit: mm)



Din35 RAIL

#### **Guarantee:**

Within two years from the date of sale of this product, if the user complies with the storage, transportation and use requirements, and the product quality is lower than the technical index, it can be returned to the factory for free maintenance. In case of damage due to violation of operation regulations and requirements, the device cost and maintenance cost shall be paid.

#### **Copyright:**

Copyright © 2021 Shenzhen WAYJUN Industrial Automation

No part of this manual may be copied, distributed, translated or transmitted without permission. This manual is subject to change and update without notice.

# Trademark:

Other trademarks and copyrights mentioned in this manual belong to their respective owners.

Version No.: V1.1 Date: August 2021